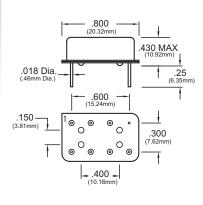
OCXO - OCVCXO Specification: OX14 - Series

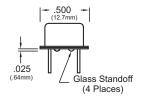
2111 Comprehensive Drive
Aurora, Illinois 60505
Phone: 630-851-4722
Fax: 630-851-5040
www.conwin.com

Description:

Connor-Winfield's high stability OX14 - series are exceptionally precise frequency standards, excellent for use in cellular base stations, test equipment, Synchronous Ethernet and VSAT applications.

These 14 Pin DIP OCXO / OCVCXO provide temperature stabilities in the range of ±50 ppb to ±100 ppb, over the commercial, extended commercial or the industrial temperature range.


The OX14 - series is available with a CMOS output along with optional Electronic Frequency Tuning (OCVCXO). These oscillators provide outstanding phase noise characteristics that will meet the most stringent requirements.


C. orling

Features:

OCXO / OCVCXO
Frequencies Available:
 10, 12.8, 19.44, 20, 25 or 38.88 MHz
3.3 Vdc Operation
14 Pin DIP or SMT Package
Frequency Stabilities Available:
 ±50 ppb or ±100 ppb
Temperature Ranges Available:
 0 to 70°C, -20 to 75°C or -40 to 85°C
CMOS Output / Low Phase Noise
Optional Electronic Frequency Tuning
RoHS Compliant / Lead Free

Package Outline

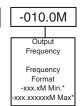
Dimensional Tolerance: ±.005 (.127mm) ±.02 (.508mm)

Marking Diagram

Pin Connections

- 1: N/C or Vc option
- 7 Ground:
- 8: Output
- 14: Supply Voltage (Vcc)

Ordering Information


Bulletin	Cx225
Page	1 of 4
Revision	P04
Date	07 Sep 2011

OX14	05
Oscillator Type	Frequency Stability
14 Pin DIP OCXO or OCVCXO	$05 = \pm 50 \text{ ppb}$ $10 = \pm 100 \text{ ppb}$

F	
Voltage Control Option	
F = OCXO (Fixed Freq.) V = OCVCXO	
(Voltage Controlled)	

numbers after the decimal point.

M = MHz

Example Part Numbers:

OX140503F-010.0M = 14 Pin DIP package, ±50 ppb, 0 to 70°C, 3.3 Vdc, LVCMOS Output, OCXO, Output Frequency 10.0 MHz
OX140523V-020.0M = 14 Pin DIP package, ±50 ppb, -40 to 85°C, 3.3 Vdc, LVCMOS Output, OCVCXO, 20.0 MHz

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040 www.conwin.com

Absolute Maximum Ratings

Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	125	°C	
Supply Voltage:	-0.5	-	4.5	Vdc	
Control Voltage (Vc)	-0.5	-	Vcc+0.5	Vdc	_

Operating Specifications

Parameter	Minimum	Nominal	Maximum	Units	Notes
Center Frequency: (Fo)	10, 12	.8, 19.44, 20, 25 o	² 38.88	MHz	
Frequency Stability vs. Change in Temperature: (S	See Ordering Inf	formation)			
Stability Code 05	-50.0	-	50.0	ppb	1
Stability Code 10	-100.0	-	100.0	ppb	1
Operating Temperature Range: (See Ordering Info	ormation)				
Temperature Code 0	0	-	70	°C	
Temperature Code 1	-20	-	75	°C	
Temperature Code 2	-40	-	85	°C	
Frequency Calibration:	-1.0	-	1.0	ppm	2
Frequency Stability vs. Load	-20	-	20	ppb	±5%
Frequency Stability vs. Voltage	-20	-	20	ppb	±5%
Aging: Daily:	-10	-	10	ppb/day	3
Aging: First Year:	-300	-	300	ppb	3
Total Frequency Tolerance (20 Years)	-4.60	-	4.60	ppm	4
Supply Voltage: (Vcc) (See Ordering Information)					
Supply Voltage Code 3	3.13	3.30	3.47	Vdc	±5%
Power Consumption: Vcc = Nominal Voltage					
Turn On	-	-	3.0	W	
Steady State @ 25°C	-	-	1.3	W	
Phase Jitter: (BW: 12 KHz to Fo/2)	-	0.5	1.0	ps RMS	
Short Term Stability	-	-	1.0E-9/s		
Start-Up Time:	-	-	1	ms	
Warm Up Time (Within Specification @ 25°C)	-	-	60	S	
Warm Up Time (Within Specification @ -40°C)	-	-	90	S	

OCVCXO Input Characteristics (Optional)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Control Voltage Range:					
Vcc = 3.3 Vdc	0.30	1.65	3.00	V	5
Frequency Pullability:	±10.0	-	-	ppm	6
Input Impedance	100K	-	=	Ohms	
Linearity	±5	-	=	%	

Bulletin	Cx225
Page	2 of 4
Revision	P04
Date	07 Sep 2011

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040

www.conwin.com

CMOS Output Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	15	-	рF	7
Output Voltage:					
Vcc = 3.3 Vdc High (Voh)	2.70	-	-	V	
Low (Vol)	-	-	0.30	V	
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time: 10% to 90%	-	-	6.5	ns	

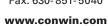
Phase Noise Characteristics

Typical Phase Noise for OX140503F - 010.0M

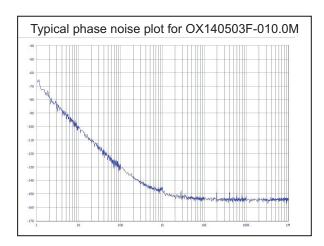
Parameter	71	Minimum	Nominal	Maximum	Units	Notes
@ 1 Hz offset		-	-67	-	dBC/Hz	
@ 10 Hz offset		-	-100	-	dBC/Hz	
@ 100 Hz offset		-	-130	-	dBC/Hz	
@ 1 KHz offset		-	-148	-	dBC/Hz	
@ 10 KHz offset		-	-154	-	dBC/Hz	
@ 100 KHz offset		-	-155	-	dBC/Hz	

Package Characteristics

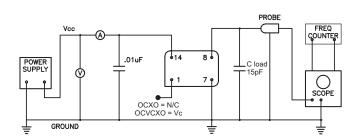
OX14-Series Package 14 Pin DIP Hermetically Metal Package

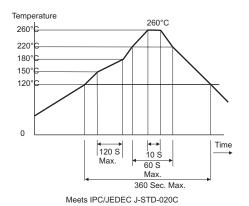

Environmental Characteristics

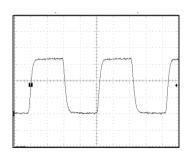
Shock	500 G's 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
Sinusoidal Vibration	0.06" D.A. or 10G's Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
Random Vibration	5.35 G's rms. 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
Moisture	10 cycles, 95% RH, Per MIL-STD-202G, Method 112.
Marking Permanency	Per MIL-STD-202G, Method 215J.
Solder Process	RoHS compliant, lead free. See solder profile on page 3.


Notes:

- 1. Frequency stability vs. change in temperature. [±(Fmax Fmin)/2.Fo].
- 2. Initial calibration @ 25°C. For OCVCXO control voltage must be fixed.
- 3. After 30 days of operation
- $4. \ \textit{Inclusive of calibration @ 25°C, frequency vs. change in temperature, change in supply voltage (\pm 5\%), load change (\pm 5\%), shock and vibration \ \textit{and 20 years aging.} \\$
- 5. Positive slope. (Frequency increases as Vc voltage increases.)
- 6. Referenced to Fo.
- 7. Attention: To achieve optimal frequency stability, and in some cases to meet the specification stated on this data sheet, it is required that the circuit connected to this OCXO output must have the equivalent input capacitance that is specified by the nominal load capacitance. Deviations from the nominal load capacitance will have a graduated effect on the stability of approximately 20 ppb per pF load difference.


Bulletin	Cx225
Page	3 of 4
Revision	P04
Date	07 Sep 2011


Phase Noise Plot


Test Circuit

RoHS Solder Profile

CMOS Output Waveform

Bulletin	Cx225
Page	4 of 4
Revision	P04
Date	07 Sep 2011