Description:
Connor-Winfield’s high stability DOCSC Series is an exceptionally precise frequency standard, excellent for use in cellular base stations, test equipment, Synchronous Ethernet and VSAT applications.

Based on an SC-cut crystal, the DOCSC Series offers low aging and tight stability in a 9x14mm surface mount package.

Features:
- OCXO or VCOCXO
- 3.3 Vdc Operation
- SMT Package
- Frequency Stability ±20 ppb
- Temperature Ranges: 0 to 70°C, -20 to 75°C or -40 to 85°C
- Low Phase Noise
- LVCMOS Output
- RoHS Compliant / Lead Free

Ordering Information

<table>
<thead>
<tr>
<th>Oscillator Type</th>
<th>Frequency Stability</th>
<th>Temperature Range</th>
<th>Voltage Control Option</th>
<th>Output Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Vdc LVCMOS Output Surface Mount OCXO</td>
<td>02 = ±20.0 ppb</td>
<td>0 = 0 to 70°C 1 = -20 to 75°C 2 = -40 to 85°C</td>
<td>F = OCXO (Fixed Freq.) V = VCOCXO (Voltage Controlled)</td>
<td>-xx.xx Mhz Min * -xx.xxxxxxxx Mhz Max *</td>
</tr>
</tbody>
</table>

* Number of allowable digits after the decimal point. M = MHz

Attention: System Designers please review Application Note AN2093: System Design Information and Printed Circuit Board Layout Guidelines for OCXO Oscillators. @ www.conwin.com/technologies.html
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-55</td>
<td>-</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage - 3.3 Vdc (Vcc)</td>
<td>-0.5</td>
<td>-</td>
<td>4.5</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Control Voltage (Vc)</td>
<td>-0.5</td>
<td>-</td>
<td>Vcc+0.5</td>
<td>Vdc</td>
<td></td>
</tr>
</tbody>
</table>

Operating Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Frequency (Fo)</td>
<td>10</td>
<td>-</td>
<td>40</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Frequency Stability vs. Change in Temperature</td>
<td>-20</td>
<td>-</td>
<td>20</td>
<td>ppb</td>
<td>1</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 0</td>
<td>0</td>
<td>-</td>
<td>70</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Option 1</td>
<td>-20</td>
<td>-</td>
<td>75</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Option 2</td>
<td>-40</td>
<td>-</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Frequency Calibration</td>
<td>-1.0</td>
<td>-</td>
<td>1.0</td>
<td>ppm</td>
<td>2</td>
</tr>
<tr>
<td>Frequency Stability vs Load</td>
<td>-20</td>
<td>-</td>
<td>20</td>
<td>ppm ±5%</td>
<td></td>
</tr>
<tr>
<td>Frequency Stability vs Voltage</td>
<td>-20</td>
<td>-</td>
<td>20</td>
<td>ppm ±5%</td>
<td></td>
</tr>
<tr>
<td>Aging: Daily</td>
<td>-5.0</td>
<td>-</td>
<td>5.0</td>
<td>ppm/day</td>
<td>3</td>
</tr>
<tr>
<td>Aging: First Year</td>
<td>-0.3</td>
<td>-</td>
<td>0.3</td>
<td>ppm</td>
<td>4</td>
</tr>
<tr>
<td>Total Frequency Tolerance (20 Years)</td>
<td>-3.0</td>
<td>-</td>
<td>3.0</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage (Vcc)</td>
<td>3.13</td>
<td>3.30</td>
<td>3.47</td>
<td>Vdc</td>
<td>5</td>
</tr>
</tbody>
</table>

Power Consumption Vcc = Nominal Voltage

Commercial Temperature Range: 0 to 70 °C
- Turn On: 2.5 W
- Steady State @ 25°C: 1.1 W

Industrial Temperature Range: -40 to 85 °C
- Turn On: 3.0 W
- Steady State @ 25°C: 1.3 W

Phase Jitter: (BW: 12 KHz to 5MHz @ Fo=40.0MHz)
- 0.25 ps RMS
- 0.35 ps RMS

Allan Deviation (Tau=1s)
- 3.0E-11

Start-Up Time (for Vcc ramp ≤ 500us)
- 10 ms

Warm Up Time (Within Specification @ 25°C)
- 60 s

Warm Up Time (Within Specification @ -40°C)
- 90 s

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-55</td>
<td>-</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage - 3.3 Vdc (Vcc)</td>
<td>-0.5</td>
<td>-</td>
<td>4.5</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Control Voltage (Vc)</td>
<td>-0.5</td>
<td>-</td>
<td>Vcc+0.5</td>
<td>Vdc</td>
<td></td>
</tr>
</tbody>
</table>

CMOS Output Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
<td>7</td>
</tr>
<tr>
<td>Output Voltage: High (Voh)</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low (Vol)</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Current: High (Ioh)</td>
<td>-4</td>
<td>-</td>
<td>-</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Low (Iol)</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle at 50% of Vcc</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Rise / Fall Time: 10% to 90%</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Typical Phase Noise Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fo=10 MHz</th>
<th>Fo=24.576MHz</th>
<th>Fo=40.0MHz</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ 1 Hz offset</td>
<td>-72</td>
<td>-70</td>
<td>-67</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>@ 10 Hz offset</td>
<td>-100</td>
<td>-96</td>
<td>-90</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>@ 100 Hz offset</td>
<td>-128</td>
<td>-125</td>
<td>-116</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>@ 1 KHz offset</td>
<td>-145</td>
<td>-145</td>
<td>-139</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>@ 10 KHz offset</td>
<td>-151</td>
<td>-151</td>
<td>-147</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>@ 100 KHz offset</td>
<td>-154</td>
<td>-154</td>
<td>-153</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>@ 1MHz offset</td>
<td>-155</td>
<td>-155</td>
<td>-153</td>
<td>dBC/Hz</td>
<td></td>
</tr>
</tbody>
</table>

@ www.conwin.com/technologies.html

Specifications subject to change without notification. See Connor-Winfield’s website for latest revision.
© Copyright 2019 The Connor-Winfield Corporation Not intended for life support applications.

Bulletin: Cx264
Page: 2 of 4
Revision: 07
Date: 18 Sept 2019
Input Characteristics - Voltage Controlled Option

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Voltage Range</td>
<td>0.30</td>
<td>1.65</td>
<td>3.00</td>
<td>V</td>
<td>8</td>
</tr>
<tr>
<td>Frequency Pullability</td>
<td>±3.0</td>
<td>-</td>
<td>±10.0</td>
<td>ppm</td>
<td>9</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>100K</td>
<td>-</td>
<td>-</td>
<td>Ohms</td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>-</td>
<td>-</td>
<td>±5</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Package Characteristics

DOC Package

Package consisting of a FR-4 substrate and Ryton-R-4 cover. Water Resistant package, non-hermetic seal. (Engineering Properties of Ryton-R4 Application Note AN2100)

Environmental Characteristics

- **Shock**
 500 G’s 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
- **Sinusoidal Vibration**
 0.06” D.A. or 10G’s Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
- **Random Vibration**
 5.35 G’s rms, 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
- **Moisture**
- **Marking Permanency**

Solder Process Recommendations:

- **In-line reflow:**
 Refer to recommended reflow pre-heat and reflow temperatures on page 4. Package material consist of Ryton R-4 high temperature cover with FR4 substrate. Component solder is Pb free high temperature eutectic alloy with a melting point of 221°C.
- **In-line oven profile:**
 We recommend using KIC profiler or similar device placing one of the thermocouples on the device to ensure that the internal package temperature does not exceed 221°C.
- **Removal of device:**
 If for any reason the device needs to be removed from the board, use a temperature controlled repair station with profile monitoring capabilities. Following a monitored profile will ensure the device is properly pre-heated prior to reflow. Refer to IPC 610E for inspection guidelines.

Recommended Cleaning Process:

(If required)

Device is non-hermetic, water resistance with four weep holes, one in each corner to allow moisture to be removed during the drying cycle. We recommend in-line warm water wash with air knife and drying capabilities. If cleaner does not have drying capability, then use hot air circulated oven. Boards should be placed in the oven vertically for good water runoff.

Device must be dried properly prior to use!

Notes:

1. Frequency stability vs. change in temperature, \(|F_{max} - F_{min}|/(2|F_{o}|) \).
2. Initial calibration @ 25°C. For OCXO with voltage control option, the control voltage must be fixed.
3. After 10 days of operation
4. Inclusive of calibration @ 25°C, frequency vs. change in temperature, change in supply voltage (±5%), load change (±5%), shock and vibration and 20 years aging
5. Minimum *Power On Time* after rail rises from 0 to within +/- 5% of Vcc = 1 second.
6. Supply voltage must reach Vcc level monotonically.
7. 10ms start time is guaranteed when supply voltage reaches Vcc level in less than or equal to 500us. If supply ramp is greater than 500us, then start times as long as 1s are possible.
8. Attention: To achieve optimal frequency stability, and in some cases to meet the specification stated on this data sheet, it is required that the circuit connected to this OCXO output must have the equivalent input capacitance that is specified by the nominal load capacitance. Deviations from the nominal load capacitance will have a graduated effect on the stability of approximately 20 ppb per pF load difference.
9. Positive slope. (Frequency increases as Vc voltage increases). To ensure proper operation of VCOXO’s, the control voltage input must be biased the nominal control voltage. Failure to bias the Vc input will cause an unstable output condition.
10. Referenced to Fo.

Attention: System Designers please review Application Note AN2093:

System Design Information and Printed Circuit Board Layout Guidelines for OCXO Oscillators.

@ www.conwin.com/technologies.html

Specifications subject to change without notification. See Connor-Winfield’s website for latest revision.

© Copyright 2019 The Connor-Winfield Corporation Not intended for life support applications.
LVCMOS Test Circuit

Phase Noise Plot

Typical Phase Noise for DOCSC022V-034.674M

- Pad 1: VCOCXO = Vc
- Pad 2: OCXO = NC

- Output

Allan Deviation Plot

Allan Deviation DOCSC022F-034.675H

- Typical
- Up to 120 s

CMOS Output Waveform

- Temperature
- Meets IPC/JEDEC J-STD-020C

RoHS Solder Profile

- Temperature
- Up to 120 s

Tape and Reel Information

- MEETS EIAJ-481A & EIAJ-1009B
- Direction of Feed (Customer)

- SM/SMC (0.100 in)
- 0.05 (0.002 in)
- 0.05 (0.002 in)
- 0.100 (0.004 in)
- 0.025 (0.001 in)
- 0.012 (0.0005 in)
- 0.010 (0.0004 in)
- 0.008 (0.0003 in)
- 0.006 (0.0002 in)
- 0.004 (0.0002 in)
- 0.002 (0.0001 in)
- 0.001 (0.0001 in)

- 0V

@ www.conwin.com/technologies.html

Specifications subject to change without notification. See Connor-Winfield’s website for latest revision.

© Copyright 2019 The Connor-Winfield Corporation Not intended for life support applications.