

TCXO - VCTCXO TX14 Series

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com

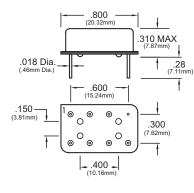
Description:

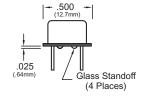
The Connor-Winfield's TX14 Series of Temperature Compensated Crystal Oscillators and Voltage Controlled Temperature Compensated Crystal Oscillators are designed for use in S3 Telecom Applications. Through the use

of Analog Temperature Compensation, this device is capable of holding sub 1-ppm stabilities over the commercial or the industrial temperature ranges. Most models will meet ±4.6 ppm accuracies for twenty years. STRATUM 3 compliant models are available.

The TX14 series provides temperature stabilities in the range of ±0.28 ppm to ±2.50 ppm, over the commercial, extended commercial or the industrial temperature range.

The TX14 series is available with a LVCMOS or Clipped Sinewave output along with Tri-State Enable / Disable function or optional Electronic Frequency Tuning (VCTCXO). These oscillators provide outstanding phase noise characteristics that will meet the most stringent requirements.


Features:


- TCXO / VCTCXO
- CMOS Frequency Range: 1 to 100 MHz
- Clipped Sine Freq. Range: 6.4 to 100 MHz
- 3.3 Vdc Operation
- LVCMOS, or Clipped Sinewave Output
- Frequency Stabilities Available: ±0.28ppm, **✓** STRATUM 3
- ±0.5ppm,±1.0ppm or ±2.5ppm Temperature Ranges Available:
- 0 to 70°C. -20 to 70°C or -40 to 85°C
- Frequency Tolerance: ±4.60 ppm for 20 years.
- Low Jitter <1ps RMS
- Tri-State Enable/Disable Function or Voltage Control on Pin 1
- Hermetically Sealed 14 Pin DIP Package
- RoHS Compliant / Lead Free
 ✓ RoHS
- Recommended for New Designs

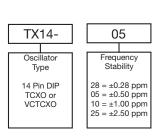
Applications:

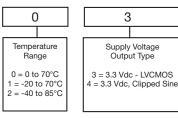
- IEEE 1588 Applications
- Synchronous Ethernet slave clocks, ITU-T G.8262 EEC options 1 & 2
- Compliant to Stratum 3, GR-1244-CORE and GR-253-CORE
- Wireless Communications
- Small Cells
- Test and Measurement

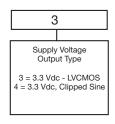
Package Outline

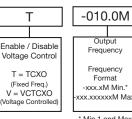
Dimensional Tolerance: ±.005 (.127mm) ±.02 (.508mm)

Marking Diagram




Pin Connections


- 1: Enable / Disable or Vc (optional)
- 7: Ground
- 8: Output
- 14: Supply Voltage (Vcc)


Bulletin	Tx343
Page	1 of 4
Revision	05
Date	21 Nov 2023

Ordering Information

Min 1 and Max 6 digits after the decimal point

Example Part Numbers:

TX14-0503T-010.0M = 14 Pin DIP package, ±0.50 ppm, 0 to 70°C, 3.3 Vdc, LVCMOS Output, TCXO, Output Frequency 10.0 MHz TX14-1023V-020.0M = 14 Pin DIP package, ±1.00 ppm, -40 to 85°C, 3.3 Vdc, LVMOS Output, VCTCXO, 20.0 MHz

Aurora, Illinois 60505

Phone: 630-851-4722 Fax: 630-851-5040

www.conwin.com

Absolute Maximum Ratings					
Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	125	°C	
Supply Voltage 3.3 Vdc (Vcc)	-0.6	-	4.6	Vdc	
Control Voltage (Vc)	-0.5	-	Vcc+0.5	Vdc	

Absolute Ratings: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only. The functional operation of the device at those or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to conditions outside the "recommended operating conditions" for any extended period of time may adversely impact device reliability and result in failures not covered by warranty.

Operating Specifications for TX14-28xxx Series

Parameter	Minimum	Nominal	Maximum	Units	Notes
Frequency Range (Fo)	1.0	-	50	MHz	
Frequency Calibration	-1.0	-	1.0	ppm	1
Frequency Stability vs. Change in Temperatur	e: (See Ordering Info	ormation) VSTRA	гим з		
Stability Code 28	-0.28	-	0.28	ppm	2
Holdover Stability	-0.32	=	0.32	ppm	3
Frequency Stability vs. Load	-50	-	50	ppb	±5%
Frequency Stability vs. Voltage	-50	=	50	ppb	±5%
Aging / Life (20 Years)	-3.0	=	3.0	ppm	
Aging / Day (@25 °C)	-40	-	40	ppb/day	
Aging / Second	-4.63E-13	=	4.63E-13		
Total Frequency Tolerance (20 Years)	-4.60	=	4.60	ppm	4

Operating Specifications for TX14-05xxx Series

Parameter	Minimum	Nominal	Maximum	Units	Notes
Frequency Range (Fo)	1.0	-	100	MHz	
Frequency Calibration	-1.0	-	1.0	ppm	1
Frequency Stability vs. Change in Temperatu	ire: (See Ordering Info	ormation)			
Stability Code 05	-0.50	-	0.50	ppm	2
Frequency Stability vs. Load	-50	-	50	ppb	±5%
Frequency Stability vs. Voltage	-50	-	50	ppb	±5%
Aging / Life (20 Years)	-3.0	-	3.0	ppm	
Total Frequency Tolerance (20 Years)	-4.60	_	4.60	nnm	4

Operating Specifications for TX14-10xxx Series

Parameter	Minimum	Nominal	Maximum	Units	Notes
Frequency Range (Fo)	1.0	-	100	MHz	
Frequency Calibration	-1.0	-	1.0	ppm	1
Frequency Stability vs. Change in Temperatu	ire: (See Ordering Info	ormation)			
Stability Code 10	-1.00	-	1.00	ppm	2
Frequency Stability vs. Load	-50	-	50	ppb	±5%
Frequency Stability vs. Voltage	-50	-	50	ppb	±5%
Aging / Life (20 Years)	-3.0	-	3.0	ppm	
Total Frequency Tolerance (20 Years)	-4.60	-	4.60	mag	4

Operating Specifications for TX14-25xxx Series

operating openioations for 17(14 Zoxxx Octios					
Parameter	Minimum	Nominal	Maximum	Units	Notes
Frequency Range (Fo)	1.0	-	100	MHz	
Frequency Calibration	-1.0	-	1.0	ppm	1
Frequency Stability vs. Change in Temperator	ure: (See Ordering Info	ormation)			
Stability Code 25	-2.50	-	2.50	ppm	2
Frequency Stability vs. Load	-50	-	50	ppb	±5%
Frequency Stability vs. Voltage	-50	-	50	ppb	±5%
Aging / Life (20 Years)	-3.0	-	3.0	ppm	
Total Frequency Tolerance (20 Years)	-6.1	-	6.1	mag	4

Notes:

- 1. Initial calibration @ 25°C. Specifications at time of shipment after 48 hours of operation. For VCTCXO control voltage must be fixed.
- 2. Frequency stability vs. change in temperature. [±(Fmax Fmin)/(2*Fo)].
- 3. Inclusive of frequency stability, supply voltage change ($\pm 1\%$), aging, for 24 hours.
- 4. Inclusive of calibration @ 25°C, frequency vs. change in temperature, change in supply voltage (±5%), load change (±5%), shock and vibration and 20 years aging.

Bulletin	Tx343
Page	2 of 4
Revision	05
Date	21 Nov 2023

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040 www.conwin.com

Operating Tempo	erature Range	es		
Minimum	Nominal	Maximum	Units	Notes
Information)				
Ó	_	70	°C	
-20	_	70	°C	
-40	-	85	°C	
Operating Sp	ecifications			
Minimum	Nominal	Maximum	Units	Notes
ion)				
3.13	3.30	3.47	Vdc	±5%
-	2.1	6.0	mA	
-	-	12	mA	
-	1.3	2.9	mA	
-	-	12	mA	
-0.4	-	0.4	ppm	5
-	3	5	ps RMS	
-	0.5	1.0	ps RMS	
=	-100	-	dBC/Hz	
-	-130	-	dBC/Hz	
=	-145	-	dBC/Hz	
-	-154	-	dBC/Hz	
-	-155	-	dBC/Hz	
-	-	1	ms	
	Minimum g Information) 0 -20 -40 Operating Sp Minimum ion) 3.13	Minimum Nominal g Information) 0 -20 - -40 - Operating Specifications Minimum Nominal Minimum Nominal - 2.1 - - - 1.3 - - - - - 0.5	O	Minimum Nominal Maximum Units g Information) 0 - 70 °C -20 - 70 °C -40 - 85 °C Operating Specifications Minimum Nominal Maximum Units ion) 3.13 3.30 3.47 Vdc - 2.1 6.0 mA - - 12 mA - - 0.4 ppm - - 0.5 1.0 ps RMS - - - dBC/Hz

CMOS Output Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
LVCMOS Output Code 3 (See Ordering	Information)				
Load	-	15	=	рF	
Output Voltage:					
High (Voh)	90%Vcc	-	-	V	
Low (Vol)	-	-	10%Vcc	V	
Output Drive Current:					
loh	-	-	-4	mA	
lol	4	-	-	mA	
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time: 10% to 90%	-	-	8	ns	

Clipped Sinewave Output Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Clipped Sinewave Output Code 4	(S	ee Ordering Informati	on)		
Load	-	10K Ohm // 10pF	-	pF	AC Coupled
Output Voltage:					
≤ 40 MHz	1.00	-	-	V pk-pk	
> 40 MHz	0.80	-	-	V pk-pk	

Voltage Control Input Characteristics (Pin 1) Optional

Total go o o train or in part o train a o total o to train a o total o					
Parameter	Minimum	Nominal	Maximum	Units	Notes
Control Voltage Range: (Vc) Voltage Control Code	V (See	e Ordering Informa	ation)		
Vcc = 3.3 Vdc	0.30	1.65	3.00	V	
Frequency Pullability:	±10.0	-	=	ppm	6
Input Impedance	100K	-	-	Ohms	
Linearity	±5	-	=	%	
Slope	Pos	sitive Transfer Fund	ction		

Notes:

- Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C
 Referenced to Fo
 (On page 4) Leave Pin 1 unconnected if enable / disable function is not required. When tri-stated, the output stage is disabled but the oscillator and compensation circuit are still active (current consumption ≤ 1mA).

Bulletin	Tx343
Page	3 of 4
Revision	05
Date	21 Nov 2023

Parameter

Aurora, Illinois 60505

Phone: 630-851-4722 Fax: 630-851-5040

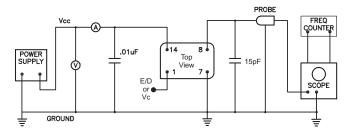
www.conwin.com

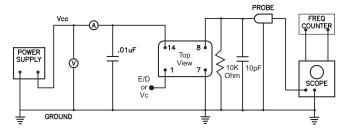
Notes

Enable / Di	sable Functior	n Characterist	ics (Pin 1)	
	Minimum	Nominal	Maximum	Units
Ordering Informati	on)			

Enable / Disable Code T (See Ordering Information) Enable Voltage (High) or Open Circuit 70%Vcc Vdc Disable Voltage (Low) Output Tri-Stated 30%Vcc Vdc

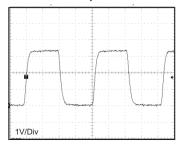
Package Characteristics

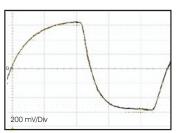

14 Pin DIP Hermetically Sealed Metal Package TX14-Series Package


Environmental Characteristics

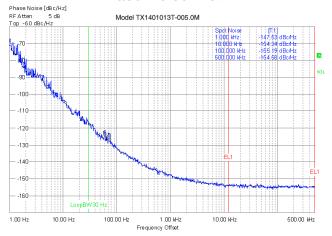
Shock	500 G's 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
Sinusoidal Vibration	0.06" D.A. or 10G's Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
Random Vibration	5.35 G's rms. 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
Moisture	10 cycles, 95% RH, Per MIL-STD-202G, Method 112.
Marking Permanency	Per MIL-STD-202G, Method 215J.
Solder Process	RoHS compliant, lead free. See solder profile below.

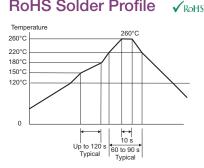
CMOS Test Circuit


Clipped Sinewave Test Circuit



Attention: To achieve optimal frequency stability, and in some cases to meet the specification stated on this data sheet, it is required that the circuit connected to this TCXO output must have the equivalent input capacitance that is specified by the nominal load capacitance. Deviations from the nominal load capacitance will have a graduated effect on the stability of approximately 20 ppb per pF load difference.


LVCMOS Output Waveform


Clipped Sinewave Output Waveform

Phase Noise Plot

RoHS Solder Profile

Meets IPC/JEDEC J-STD-020C

Bulletin	Tx343
Page	4 of 4
Revision	05
Date	21 Nov 2023